ノーマルビュー

ロボットアーム運動生成 旧来比4倍を超える高速計算手法を開発

2023年10月16日 11:25

ロボットアーム運動生成 旧来比4倍を超える高速計算手法を開発

量子インスパイアード技術「デジタルアニーラ」を活用した世界初の取り組み

発表のポイント

ロボットの運動時のエネルギー消費の低減に向けて、効率的な運動軌道を導いたり、その軌道を実現する各時間の加減速への考慮を行ったりするための最適化計算は、これまで運動そのものに比べて膨大な時間を要し、ロボット開発やその進歩にとって大きな障壁となっていました。
組合せ最適化問題を高速に解くことに特化した「デジタルアニーラ」の技術を用いて、ロボットアーム先端の軌道求める最適制御問題として定式化しました。
今回開発した計算手法によって、エネルギー消費の観点で最適な運動生成を達成する高速計算を実現すると同時に約10%のエネルギー消費の低減をもたらすことができました。

早稲田大学(以下、早大)理工学術院総合研究所の大谷拓也(おおたにたくや)次席研究員ならびに同大理工学術院の高西淳夫(たかにしあつお)教授らの研究グループは、富士通株式会社(以下、富士通)との産学連携により、次世代コンピューティングの一つであるアニーリング方式に属する、富士通の量子インスパイアード技術*1「デジタルアニーラ*」を用いて、ロボットの構造に応じたエネルギー消費の少ない運動を高速で計算する手法を提案しました。量子インスパイアード技術をロボットアームの運動生成に活用する取り組みとしては世界初となります。

本研究成果は世界最大の学術研究団体であり、全世界に40万人を超える会員を有する米国電子電気学会(IEEE)発行の『IEEE access』に2023年9月28日(木)(現地時間)に掲載されました。

【論文情報】
雑誌名:IEEE access
論文名:Energy Efficient Path and Trajectory Optimization of Manipulators with Task Deadline Constraints
DOI10.1109/ACCESS.2023.3320143

(1)これまでの研究で分かっていたこと(科学史的・歴史的な背景など)

近年、様々な場面でロボットの実用化が進み始めている一方で、エネルギー不足の問題は、ロボット分野のみならず、世界的な問題として深刻化しています。ロボットのエネルギー効率が低いと、エネルギーが無駄に消費されてしまいます。人間は、身体に多くの関節を持ち、手の位置が同じでも様々なポーズで実現することができ、楽な姿勢をすればエネルギー消費は減ります。人間と同じく、ロボットがどのように動くかによってエネルギー消費は変わります。

そのため、ロボットが腕を動かして作業をする際の手の位置が同じであっても、どのように動くかをロボット自身が自動でエネルギー消費の少ない運動を求める計算ができれば、ロボットの運動時のエネルギー消費を低減できます。しかし、腕や足は複数の関節から成ることでその計算が複雑となるため、運動に対して膨大な時間が必要でした。また、ロボットの動く軌道と、その軌道を実現する際の各時間の加減速を同時に考慮することは困難でした。

(2)今回の研究で新たに実現しようとしたこと、明らかになったこと

ロボットのエネルギー消費を低減する方法として、ロボットができる運動範囲の中からエネルギー消費の少ないポーズを考慮できれば、作業時間の一部はエネルギー消費の少ないポーズを経由して動くことができます。また、ロボット内にバネがある場合にはバネがロボットの腕の重さを支えてくれるポーズをとるなど、ロボットの取れる範囲で最適な動作を計画することができると考えました。さらに、ロボットに指示する作業完了時間に余裕がある場合は、作業時間すべてを使ってゆっくり動くよりも、エネルギー消費の少ない楽な姿勢で待機しておき残りの時間で動く運動も、エネルギー消費を低減することには有効です。

そこで本研究では、次世代コンピューティングの一つであるアニーリング方式に属する富士通株式会社の量子インスパイアード技術「デジタルアニーラ」を用いて、ロボットの構造に応じたエネルギー消費の少ない運動を高速で計算する手法(次項「(4)そのために新しく開発した手法」参照)を提案しました。本手法では、従来の運動生成手法よりもはるかに高速に、ロボットの可動範囲全体を考慮した低エネルギー消費の運動を生成できることがわかりました。一例として、従来はロボットの運動を数式として表現して連続的に計算する手法である内点法*3を用いて440秒かかっていた3秒間のロボット運動生成を、「デジタルアニーラ」による計算100秒で完了できました。旧来比で4倍以上の圧倒的な高速性を示すことができました。また、ロボットアームを前に伸ばす動作や、腕を上げる動作をシミュレーションし、ロボットの各部の重さや長さ、ばねの有無などを考慮してエネルギー消費を計算することで、腕を伸ばす際に短い状態で待機してから伸ばす動作や、腕を上げる際に真上にゆっくり上げてから少し前に出すような動作が生成されました(図2)。さらに、ロボット内にバネがある場合には、ばねが支えられる範囲で腕の重さを支えてもらえる位置に腕を移動した後、目標に到達する運動が生成されました。これらによって、一般的な比較対象として用意した、運動の開始地点から終了地点までの等速直線軌道を通った場合に対して、関節に必要な力の合計が約10%減少でき、エネルギー消費が少なくなりました。

(3)そのために新しく開発した手法

本研究が解くロボットの運動生成問題は、ロボットの運動時のエネルギー消費を最小化する離散化された一連のロボットアームの手の位置を求める最適制御問題として定式化します。本研究で提案する運動計画法は、主に以下の①~⑤からなる5つのステップから構成されます。

  1. ロボットの手の可動範囲を離散化する。
  2. 離散化された手の位置とそれらの組合せにおける各関節角度、角速度、角加速度を計算する。
  3. 実行する作業に応じて目的関数と制約条件を設定する。
  4. コスト最小化問題を二次制約なし二値最適化(QUBO)に変換する。
  5. イジングマシンによる最適化計算を行う。

空間内でのロボットの幅広い動作を単純化するために、ロボットの手の位置を離散化します。従来は、ロボットの運動方程式を構築し連続最適化問題として解く手法が提案されていましたが、ロボットのダイナミクスが複雑であると運動方程式も複雑になり数学的に解くことが難しいことが大きな課題でした。そこで、ロボットの手の位置の時間変化が軌道であるとして連続的な軌道を各瞬間の手の位置の組み合わせと考え、各瞬間にどの手の位置にあるかを組合せ最適化計算によって求めます。ロボットが消費するエネルギーはある時刻に手先位置がどのように変化したかによって計算できるため、離散化した手の位置の中から、手の位置同士の組合せごとに必要なエネルギーを計算し、ロボットのエネルギー消費ライブラリ*4を作成します。このデータから、各時刻の手先位置変化に必要なエネルギーの運動開始から終了までの合計が最小となる手の位置の一連の組み合せを求めます。

本研究では、量子現象に着想を得たデジタル回路設計により複雑な組合せ最適化問題を高速に解くことに特化した技術である、富士通の「デジタルアニーラ」を用いました。これにより、シミュレーテッド・アニーリング*5などの従来の手法よりも高速に組合せ最適化問題を解くことができます。

(4)研究の波及効果や社会的影響

本研究は、ロボットアームを持つ形状のようなロボットであれば汎用的に使用できる技術となっており、論文の中でも複数のロボットアームに対して、それぞれに異なる運動を生成しています。これらによってエネルギー消費を低減できれば、これからロボットが普及していく際にも、ロボットのエネルギー問題を解決することに貢献できると考えます。また、ロボットのエネルギー消費が小さくなれば同じバッテリであっても稼働時間が長くなり、さらには、屋外環境や宇宙など、エネルギー量が限られる空間でのロボットの活躍にも貢献できると期待しています。

(5)今後の課題

現状の課題として、より関節数の多いロボットの運動生成を行うには長い時間を要してしまいます。最適化を行う範囲を段階的に設定して最適化するなどによって、さらに大規模な運動生成を高速に計算する手法が求められます。今後は、ロボットでの様々な運動生成の実証を進めるとともに、ロボットの大きさや重さだけでなく、各部の構造の違いとしてギヤの違いなどをさらに考慮していくことを目指します。

(6)研究者のコメント

最先端の量子インスパイアード技術を用いることで多くのロボットのエネルギー消費低減に貢献できる技術を開発できました。複雑なロボットの運動は既存の計算手法では解くことが難しく、量子コンピューティング技術を用いることでロボット技術もさらに発展すると思うので、これからも研究を進めます。

(7)用語解説

1 量子インスパイアード技術

量子現象に着想を得たコンピューティング技術で、現在の汎用コンピュータでは解くことが難しい「組合せ最適化問題」を高速で解く技術

2 「デジタルアニーラ」

現在の汎用コンピュータでは解くことが困難な組合せ最適化問題を高速に解く富士通独自の量子インスパイアード技術。Fujitsu Computing as a Service Digital Annealer として提供。

3 内点法

連続最適化問題のアルゴリズムであり、特に大規模な問題を高速に解くことができる。

4 エネルギー消費ライブラリ

本研究で用いる、ロボットがあるポーズからあるポーズに短時間で運動するとどの程度のエネルギーを消費するかを、ロボットが実行可能なポーズすべてについて計算しまとめたもの。

5 シミュレーテッド・アニーリング

「焼きなまし法」とも呼ばれ、大域的最適化問題へのアプローチ方法の一つ。金属を熱してから冷ます焼きなましの工程をコンピュータ計算に応用しており、最適化問題を解くために古くから使われている。

 (8)論文情報

雑誌名:IEEE access
論文名:Energy Efficient Path and Trajectory Optimization of Manipulators with Task Deadline Constraints
執筆者名(所属機関名):Takuya Otani (Waseda University)、 Makoto Nakamura (Fujitsu Ltd.)、Koichi Kimura (Fujitsu Ltd.)and 、Atsuo Takanishi (Waseda University)
掲載日:2023年9月28日
掲載URL:https://ieeexplore.ieee.org/document/10266335
DOI:10.1109/ACCESS.2023.3320143

 

 

 

世界初 テラヘルツ波信号を分配・送信

2023年5月16日 11:05

世界初、大容量テラヘルツ波信号を光ファイバ無線技術で異なるアクセスポイントに分配・送信する技術を実現

Beyond 5G時代の無線システム社会実装に向けて 途切れることのない通信や省エネルギー化に期待~

【ポイント】

大容量テラヘルツ波信号を異なるアクセスポイントへ透過的に分配・送信することに世界で初めて成功
新規開発のテラヘルツ波-光変換デバイスと光ファイバ無線技術で、毎秒32ギガビットの大容量光アクセス通信を実証
 光・電波融合技術が可能にするテラヘルツ波Beyond 5Gネットワークへの重要な一歩

国立研究開発法人情報通信研究機構(NICT、理事長: 徳田 英幸)、住友大阪セメント株式会社(住友大阪セメント、代表取締役 取締役社長: 諸橋 央典)、国立大学法人名古屋工業大学(名古屋工業大、学長: 木下 隆利)及び学校法人早稲田大学(早稲田大、理事長: 田中 愛治)は共同で、テラヘルツ波となる285ギガヘルツの周波数帯で毎秒32ギガビットの大容量テラヘルツ波無線信号を異なるアクセスポイントへ透過的に分配・送信*1するシステムの実証に世界で初めて成功しました。

これを可能にしたのは、新規開発のテラヘルツ波-光変換デバイスと光ファイバ無線技術*2です。今回開発したシステムは、テラヘルツ波帯の電波のデメリットとされる「遠くに届きにくい、広い範囲をカバーしにくい」といった課題を克服することができ、無線信号のカバー範囲を拡大し、Beyond 5Gネットワークにおけるテラヘルツ波通信の展開に道を開くことができます。

本実験結果の論文は、光ファイバ通信国際会議(OFC 2023)にて非常に高い評価を得て、最優秀ホットトピック論文(Postdeadline Paper)として採択され、現地時間2023年3月9日(木)に発表しました。

※本研究成果における早稲田大学代表研究者は、理工学術院、川西哲也教授です。

【背景】

テラヘルツ波通信は、Beyond 5Gネットワークのアクセスポイントで超高速データレートを得るための有力な候補です。しかし、テラヘルツ波の信号は、第5世代移動通信システム(5G)で使用されているマイクロ波帯やミリ波帯の信号に比べ、伝搬損失*3が非常に大きいため、長距離の送信や屋外から屋内など、障害物のある環境での通信が困難となります。また、テラヘルツ波帯の電波はカバー範囲が狭いため、ユーザーの移動がある場合、途切れなく通信を実現することが困難です。このような課題を克服するためには、テラヘルツ波信号を透過的に分配・送信することが重要ですが、これまでこれらを効率よく実現する技術はありませんでした。

【今回の成果】

今回、NICT、住友大阪セメント、名古屋工業大及び早稲田大は共同で、テラヘルツ波信号を光信号に変換し、様々なアクセスポイントに透過的に分配・送信する技術を確立することに世界で初めて成功しました。

要素技術の一つ目は、共同開発した、テラヘルツ波を光信号に変換するテラヘルツ波-光変換デバイスで、強誘電体電気光学結晶(ニオブ酸リチウム)を利用した高速光変調器*4です(図1参照)。結晶の厚さを従来比5分の1以下である100マイクロメートル以下とすることで、285ギガヘルツのテラヘルツ波にも対応可能な高速性を実現しました。

二つ目は光ファイバ無線技術で、テラヘルツ波信号の行き先を変更できる機能を付加した点です。テラヘルツ波信号を搬送するために、波長可変レーザにより生成した異なる波長のレーザ光を用い、波長を切り替えることで、テラヘルツ波信号をスムーズに切替え可能にしました。これにより、特定の波長が割り当てられた異なるアクセスポイントすなわちユーザーの位置に応じて配信することが可能になります。

これらの開発技術を組み合わせることで、4QAM変調*5で毎秒32ギガビットの大容量テラヘルツ波信号を直接光信号に変換し、異なるアクセスポイントに分配・送信する伝送システムの構築・実証に成功しました。また、テラヘルツ波の信号を10マイクロ秒以下という極めて短い時間で切り替えることができる可能性を示しました。

本成果を応用することにより、テラヘルツ波信号をあるアクセスポイントから他のアクセスポイントへ透過的に伝送することが可能となります。また、アクセスポイント間のテラヘルツ波信号の経路制御や切替えを行うことで、途切れることのない通信や省エネルギー化が期待されます。

【今後の展望】

今後は、今回確立したテラヘルツ波-光変換デバイスと光ファイバ無線技術を活用し、Beyond 5G時代の無線システムに向けた更なる高周波化、高速化及び低消費電力化を目指した技術検討を進めていきます。また、技術検討と並行し、国際標準化活動並びに社会展開活動を推進していきます。

なお、本実験結果の論文は、光ファイバ通信分野における世界最大の国際会議の一つである光ファイバ通信国際会議(OFC 2023、3月5日(日)~3月9日(木))で非常に高い評価を得て、最優秀ホットトピック論文(Postdeadline Paper)として採択され、現地時間3月9日(木)に発表しました。

<役割分担>

NICT: 光・無線直接伝送技術の設計・技術開発・実証実験・標準化活動
住友大阪セメント: 無線信号を光信号へ変換するデバイス、高速光変調器の設計・技術開発・標準化活動
名古屋工業大学: 光局発信号発生器、光ファイバ無線技術の研究開発
早稲田大学: 光ファイバ無線技術の研究開発

<採択論文>

国際会議: 第46回光ファイバ通信国際会議(OFC 2023) 最優秀ホットトピック論文(Postdeadline Paper)
論文名: Transparent Relay and Switching of THz-wave Signals in 285-GHz Band Using Photonic Technology
著者名: Pham Tien Dat, Yuya Yamaguchi, Keizo Inagaki, Shingo Takano, Shotaro Hirata, Junichiro Ichikawa, Ryo Shimizu, Isao Morohashi, Yuki Yoshida, Atsushi Kanno, Naokatsu Yamamoto, Tetsuya Kawanishi, Kouichi Akahane

<用語解説>

*1 透過的に分配・送信

テラヘルツ波が遮られる壁などの遮蔽物があった場合、その場所でテラヘルツ波を光信号に変換し、光ファイバで伝送した後に再度テラヘルツ波に変換することで、テラヘルツ波が遮蔽物を透過したと考えてシステムを構築することができる。このためには、光信号とテラヘルツ信号を何度も行き来できる多段のRoF*2システムを簡便な構成で構築することが必要である。

*2 光ファイバ無線(RoF: Radio over Fiber

無線信号で光信号を変調することで、無線信号を直接光ファイバで伝送する技術。携帯電話や地上デジタル放送の電波不感地帯対策で既に利用されている。
NICTでは、本技術と高速受光デバイスを利用し、空港滑走路上の異物を検知するレーダーシステムや高速鉄道へミリ波信号を送り届けるシステムの実現を報告してきた。

過去のNICTの報道発表

・2021年7月15日 ミリ波無線受信機を簡素化する光・無線直接伝送技術の実証成功
https://www.nict.go.jp/press/2021/07/15-1.html

・2018年4月26日 時速500kmでも接続が切れないネットワークの実現に目途
https://www.nict.go.jp/press/2018/04/26-2.html

*3 伝搬損失

電波が大気中を進む際、空気や空気中の水分などにより、吸収されたり、散乱されたりする。これにより、電波の強度は徐々に弱くなる。これを伝搬損失と呼ぶ。

*4 光変調器

入力した電気信号を光信号に重畳するデバイス。基幹光ファイバ通信等で利用されている。デジタルデータ信号だけでなく、無線信号等を光信号へ変換する際にも用いられている。
今回は、強誘電体電気光学材料(ニオブ酸リチウム)を薄くし、電極構造を最適化することで、285ギガヘルツの光・無線変換が可能な高速性を実現した。

*5 直交振幅変調(QAM: Quadrature Amplitude Modulation

光の位相と振幅を併用し複数のビットを表現する方式(多値変調)の一種。On-Off Keying(OOK)と呼ばれるOnとOffの2つの状態(1ビット)で情報(21=2通り)を示す方式に対して、4QAMは、1シンボルが取り得る位相空間上の点が4個で、1シンボルで2ビットの情報(22=4通り)が伝送でき、同じ時間でOOK方式の2倍の情報が伝送できる。

 


補足資料

1. 今回開発したシステムの基本構成

図4は、今回開発した伝送システムの概略図を表しています。

下記の手順により、285ギガヘルツ・毎秒32ギガビットのテラヘルツ波無線信号伝送を実現しました。

(1)光ファイバ無線信号送信機

275.2ギガヘルツの周波数間隔を持つ2波長を用い、一方の波長は9.8ギガヘルツの信号で変調し、もう一方は無変調とした。変調された信号と変調されていない信号を再結合し、周波数間隔285ギガヘルツ(=275.2+9.8ギガヘルツ)のRoF信号を生成した(図4 (1)の右上の図参照)。

(2)テラヘルツ波無線送信機

光ファイバを伝送後、テラヘルツ波変換部にて、高速光検出器をベースとした光電変換器により、RoF信号から285ギガヘルツのテラヘルツ波信号へ変換し、パワーアンプで増幅した。

(3)中継ノード

受信した信号は、RFプローブを用いて、新たに開発した高速光変調器に接続し、光信号に変換した。テラヘルツ波信号の変調と切替えには、制御回路を備えた波長可変レーザを使用した。変調された信号は増幅され、波長ルータに接続され、異なるアクセスポイントに転送された。

(4)アクセスポイント

受信した光信号は、別の高速フォトダイオードに入力され、再び285ギガヘルツのテラヘルツ波信号に変換された。この信号を増幅し、48 dBiのレンズアンテナで自由空間へ送信した。

(5)テラヘルツ波信号受信機

約5 m伝送した後、別のレンズアンテナで受信し、増幅した後、サブハーモニックミキサで10.2ギガヘルツに下方周波数変換した。最後に、信号を増幅してリアルタイムオシロスコープに送り、オフラインで復調した。

2. 実験結果

図5の実験結果のグラフは、異なる波長で送られてきた信号の誤り率を示しています。ビットレートが上がると誤り率が上がりますが、毎秒32ギガビットまではデータ伝送可能であることが示されました。誤り訂正前のエラーベクトル振幅値(EVM: Error Vector Magnitude、伝送誤りに相当)で、4QAMにおいては、オーバーヘッド20%で帯域幅32ギガビットに相当します。

(b)は、受信時の4QAM信号で、4つのシンボルがはっきり見えるほど信号品質が良い(エラー訂正が少なくて済む)ことになります。

(c)は、テラヘルツ信号の切替えを行っているところを可視化した図で、横軸が時間、縦軸が信号強度になります。途中くぼんでいる部分が切替えを行っているところ(データが止まっているところ)ですが、テラヘルツ波信号の切替えを10マイクロ秒以下で行える可能性を示しました。

❌