ノーマルビュー

Brookhaven Lab Shuts Down Relativistic Heavy Ion Collider (RHIC)

2026年2月8日 21:34

🤖 AI Summary

**ブロークヘイブン国立研究所(BNL)で、相対論的重イオン衝突型加速器(RHIC)の稼働が25年にわたり幕を閉じました。**

- 2026年2月6日、米エネルギー省科学局長ダリオ・ギルが赤いボタンを押し、最後の衝突が行われた。研究者らは寂しさと同時に拍手で別れを惜しんだ。
- RHICは2000年に金原子核同士の200 GeV/核衝突を実現し、2001‑2023年にわたって「新しい物質形態」「4兆度プラズマ」「新種量子もつれ」など数々の画期的成果を上げた。
- 主な業績は、クォーク・グルオン・プラズマの生成と「ほぼ摩擦ゼロ」の完璧流体としての性質、スピン整合した陽子衝突、反物質の大量生成、そして最新走行で観測された「仮想粒子」の直接証拠である。
- 最終走行で数百ペタバイトのデータが蓄積され、衝突が止まっても科学的遺産は残る。

**次世代装置として、RHICの地下リングの一つを流用した電子イオン衝突型加速器(EIC)が建設予定。**
- 電子ビームでイオンを「ナイフ」のように切り込み、クォークとグルオンの内部構造をさらに詳しく探査できる。
- 米国で新たに建設される初の大型コライダーであり、欧州・アジアに先行された粒子物理の舞台へ再参入する象徴と位置付けられる。

RHICの閉鎖は米国唯一の対向ビーム型加速器の終焉を意味するが、EICの登場により次の十数年、若手研究者の世界的な拠点としての役割が継承される見通しである。
2001: "Brookhaven Labs has produced for the first time collisions of gold nuclei at a center of mass energy of 200GeV/nucleon." 2002: "There may be a new type of matter according to researchers at Brookhaven National Laboratory." 2010: The hottest man-made temperatures ever achived were a record 4 trillion degree plasma experiment at Brookhaven National Laboratory in New York... anointed the Guinness record holder." 2023: "Scientists at Brookhaven National Laboratory have uncovered an entirely new kind of quantum entanglement." 2026: On Friday, February 6, "a control room full of scientists, administrators and members of the press gathered" at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Lab in Upton, New York to witness its final collisions, reports Scientific American: The vibe had been wistful, but the crowd broke into applause as Darío Gil, the Under Secretary for Science at the U.S. Department of Energy, pressed a red button to end the collider's quarter-century saga... "I'm really sad" [said Angelika Drees, a BNL accelerator physicist]. "It was such a beautiful experiment and my research home for 27 years. But we're going to put something even better there." That "something" will be a far more powerful electron-ion collider to further push the frontiers of physics, extend RHIC's legacy and maintain the lab's position as a center of discovery. This successor will be built in part from RHIC's bones, especially from one of its two giant, subterranean storage rings that once held the retiring collider's supply of circulating, near-light speed nuclei...slated for construction over the next decade. [That Electron-Ion Collider, or EIC] will utilize much of RHIC's infrastructure, replacing one of its ion rings with a new ring for cycling electrons. The EIC will use those tiny, fast-flying electrons as tiny knives for slicing open the much larger gold ions. Physicists will get an unrivaled look into the workings of quarks and gluons and yet another chance to grapple with nature's strongest force. "We knew for the EIC to happen, RHIC needed to end," says Wolfram Fischer, who chairs BNL's collider-accelerator department. "It's bittersweet." EIC will be the first new collider built in the US since RHIC. To some, it signifies the country's reentry into a particle physics landscape it has largely ceded to Europe and Asia over the past two decades. "For at least 10 or 15 years," says Abhay Deshpande, BNL's associate laboratory director for nuclear and particle physics, "this will be the number one place in the world for [young physicists] to come." The RHIC was able "to separately send two protons colliding with precisely aligned spins — something that, even today, no other experiment has yet matched," the article points out: During its record-breaking 25-year run, RHIC illuminated nature's thorniest force and its most fundamental constituents. It created the heaviest, most elaborate assemblages of antimatter ever seen. It nearly put to rest a decades-long crisis over the proton's spin. And, of course, it brought physicists closer to the big bang than ever before... When RHIC at last began full operations in 2000, its initial heavy-ion collisions almost immediately pumped out quark-gluon plasma. But demonstrating this beyond a shadow of a doubt proved in some respects more challenging than actually creating the elusive plasma itself, with the case for success strengthening as RHIC's numbers of collisions soared. By 2010 RHIC's scientists were confident enough to declare that the hot soup they'd been studying for a decade was hot and soupy enough to convincingly constitute a quark-gluon plasma. And it was even weirder than they thought. Instead of the gas of quarks and gluons theorists expected, the plasma acted like a swirling liquid unprecedented in nature. It was nearly "perfect," with zero friction, and set a new record for twistiness, or "vorticity." For Paul Mantica, a division director for the Facilities and Project Management Division in the DOE's Office of Nuclear Physics, this was the highlight of RHIC's storied existence. "It was paradigm-changing," he says... Data from the final run (which began nearly a year ago) has already produced yet another discovery: the first-ever direct evidence of "virtual particles" in RHIC's subatomic puffs of quark-gluon plasma, constituting an unprecedented probe of the quantum vacuum. RHIC's last run generated hundreds of petabytes of data, the article points out, meaning its final smash "isn't really the end; even when its collisions stop, its science will live on." But Science News notes RHIC's closure "marks the end for the only particle collider operating in the United States, and the only collider of its kind in the world. Most particle accelerators are unable to steer two particle beams to crash head-on into one another."

Read more of this story at Slashdot.

水素の価格が90%OFFに。日本でもあり得る「人工鉱物水素」で脱炭素

2026年2月8日 17:00

🤖 AI Summary

**要点まとめ(日本語)**

- **人工鉱物水素とは**
- 地下の鉄含有鉱物が水と自然に反応して水素を放出する現象を、触媒入りの塩水溶液を注入して人工的に加速させる技術。
- 掘削した井戸からCO₂を出さずに水素を回収でき、石油掘削に似た手法だが環境負荷が低い。

- **Vema Hydrogenの取り組み**
- 米国スタートアップがカナダ・ケベック州で世界初のパイロット井戸を完成。
- 従来のグリーン水素(約5 USD/kg)に対し、将来的に0.5 USD/kg(90%割引)で製造できる可能性を示す試算を提示。

- **産業・社会へのインパクト**
- 低価格水素が実現すれば、水素発電が経済的に採算化し、電力供給と脱炭素が同時に進む。
- データセンターの立地基準が「電気が安く冷却しやすい」から「地下に水素生成可能な鉱物がある」へと拡大し、エネルギー自給率の低い日本にも新たな拠点選定が可能になる。

- **日本での可能性**
- Vemaの公開マップによれば、東北・九州付近に鉄鉱物層が存在し、人工鉱物水素の候補地とされている。
- もし国内で大量かつ安価な水素が確保できれば、エネルギー安全保障の向上と「ハイドロジェン・マネー」時代の到来が期待できる。

- **資源枯渇への懸念**
- Vemaは、仮に水素が化石燃料を完全に代替したとしても、数千年分に相当する水素が地下に潜在的に存在すると主張し、枯渇リスクは低いと説明している。

**結論**
人工鉱物水素は、地下の自然反応を人工的に活用することで水素コストを大幅に下げ、エネルギー供給と脱炭素の両輪を支える新技術。日本でも地下鉱物層が確認されており、将来的に国内での水素自給が現実化すれば、エネルギー政策やデータセンター立地のパラダイムシフトが期待できる。
image:generatedatwhiskデータセンターって、「電気が安くて冷やしやすい場所」に作られることが多いんです。たとえば、Googleがフィンランドにデータセンターを持っているのは、冷涼な気候で冷却コストが抑えられる上に、豊富な再生可能エネルギーが使えるから(あと税制優遇措置も効いている)とのこと。でも、これからは「水素が安い場所」が新しい選択肢になるかもしれません。地下で「勝手に」水

❌